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21.1 Introduction to Alpha Carbon Chemistry:
Enols and Enolates

* The Alpha Carbon
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Enols

In the presence of catalytic acid or base, a ketone will exist in
equilibrium with an enol.

Catalytic acid
)?\ or base /1
Ketone Enol

ketone and enol shown are tautomers—rapidly interconverting
constitutional isomers that differ from each other in the
placement of a proton and the position of a double bond.

Do not confuse tautomers with resonance structures.
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Tautomerization is catalyzed by trace amounts of either acid or
base.

MECHANISM 21.1 ACID-CATALYZED TAUTOMERIZATION
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MECHANISM 21.2 BASE-CATALYZED TAUTOMERIZATION

Proton transfer Proton transfer
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Enolates

When treated with a strong base, the a position of a ketone is
deprotonated to give a resonance-stabilized intermediate called
an enolate.
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Enolates are ambident nucleophiles
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Enolates are more useful than enols because
1. Enolates possess a full negative charge and are therefore more

reactive than enols.
2. Enolates can be isolated and stored for short periods of time,
unlike enols, which cannot be isolated or stored.
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Choosing a Base for Enolate Formation

TABLE 21.1 pK, VALUES OF SOME COMMON KETONES AND ALDEHYDES
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NaOH /J\ )k
NaOEt .
. o
Both the enolate NaOH
O and the ketone M M
)k are present at equilibrium NaOEt
- Nearly complete

enolate
\ NaH /& formation
LDA

LDA is not necessary
Irreversible

enolate
formation

21.2 Alpha Halogenation of Enols and Enolates

* Alpha Halogenation in Acidic Conditions
Under acid-catalyzed conditions, ketones and aldehydes will
undergo halogenation at the a position.
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The halogenated product can Base

undergo elimination when
treated with a base.



A variety of bases can be used, including pyridine, lithium
carbonate (Li,CO;), or potassium tert-butoxide. This provides a
two-step method for introducing a,B-unsaturation in a ketone.
This procedure is only practical in some cases, and yields are
often low. O ®

1) [H307], Bry,.
2) Pyridine

21.9 Identify reagents that can be used to accomplish each of
the following transformations
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Alpha Bromination of Carboxylic Acids: The Hell-Volhard-
Zelinsky Reaction

(90%)
This process, called the Hell-Volhard-Zelinsky reaction, is
believed to occur via the following sequence of events:
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An acid halide An acid halide
enol

H

21.10 Predict the major product for each of the following
reaction sequences: O
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Alpha Halogenation in Basic Conditions: The Haloform Reaction
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When more than one a proton is

O
present, it is difficult to achieve Br
monobromination in basic conditions, NaOH
because the brominated product is more ;r
reactive and rapidly undergoes further 2
bromination.
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21.3 Aldol Reactions

 Aldol Additions

O O OH
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MECHANISM 21.4 ALDOL ADDITION
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 Aldol Condensations

When heated in acidic or basic conditions, the product of an
aldol addition reaction will undergo elimination to produce
unsaturation between the a and B positions:
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21.3 drawing the product of an aldol condensation
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STEP 1
Identify an a position
that bears at least two

protons.

STEP 2

Redraw two molecules
of the ketone,
oriented such that the
two a protons of one
molecule are directly
facing the carbonyl
group of the other

molecule.
STEP3
Remove H,O and O
replace with a C=C H
bond. H
HJ
STEP 4

Draw the isomer with
less steric strain.
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Crossed Aldol Reactions
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Crossed aldol reactions are only efficient if they can be performed in a way that
minimizes the number of possible products. This is best accomplished in either of the
following ways:
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1. If one of the aldehydes lacks a protons and possesses an
unhindered carbonyl group, then a crossed aldol can be
performed. OH ©

R GRS

Formaldehyde
(no a protons)
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1. Crossed aldol reactions can also be performed using LDA as a
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0 o® \)J\ % n ©
e I 2w A

i

o.. @
0t H O O HO H O

\M H\J\ H > M
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21.4 Identify reagents that can be used to produce the

following compound via an aldol reaction: O OH
O OH
B
44
was an
electrophile
@\/((13 carbon) O O
( PaN
3 b
was a &J
nucleophile Nucleophile Electrophile
(a carbon) (as enolate)
O O  OH
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3) H,O™ (workup)



21.5 Alkylation of the Alpha Position

* Alkylation via Enolate lons

The a position of a ketone or an aldehyde can be alkylated via a
two-step process: (1) formation of an enolate followed by (2)
treating the enolate with an alkyvl halide

Dy

In this process, the enolate ion functions as a nucleophile and attacks the alkyl halide in

an S,2 reaction.
O

87
éf\ﬁﬁ( > )




Base Base

Kinetic enolate
(less substituted)

Thermodynamic enolate
(more substituted)

1) LDA, -78°C éf ) NaH, 25°C

l 2) RX

When the base is LDA (at low temperature), alkylation occurs at the
less-substituted o position. When the base is NaH (at room
temperature), alkylation occurs at the more-substituted a position.



* The Acetoacetic Ester Synthesis
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The alternative method begins with a
compound called ethyl acetoacetate:
Ethyl acetoacetate
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If hydrolysis is performed at an elevated
temperature, the resulting carboxylic acid
will  undergo a reaction, called
decarboxylation, to produce a
monosubstituted derivative of acetone, as
well as carbon dioxide:
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21.5 Show how you would use an acetoacetic ester synthesis to

prepare the following compound: .



21.6 Conjugate Addition Reactions

* Michael Reactions
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Enolate Enol

This type of reaction is called a conjugate addition, or a 1,4-addition

0 1)KOH o) o)

2) /VLH x H
3) H,O* ]
O O

The starting diketone is deprotonated to form a highly stabilized
enolate ion, which then serves as a nucleophile in a 1,4-

conjugate addition. o

o Electrophilic
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Michael donor Michael acceptor



* The Stork Enamine Synthesis

0o

A Michael donor Not a Michael donor Not obtained

in good yields
Gilbert Stork (Columbia University) developed o N FL‘_N,FI
a method for such a transformation in which Nk
the ketone is converted into an enamine by o
treatment with a secondary amine. ] >
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O 1) RoNH, [H*], (-H,0) O O
O

2)%*

3) HyO*

This process is called a Stork enamine synthesis, and it has three steps: (1)
formation of an enamine, (2) a Michael addition, and (3) hydrolysis.

21.7 Using any reagents of your choosing, show how you might
accomplish the following transformation:




e The Robinson Annulation Reaction

One such example is a two-step method for forming a ring, in
which a Michael addition is followed by an intramolecular aldol
condensation.

O )
+ N _NaOH | NaOH, heat
Mlchael Aldol
0 addition condensation (@)

This two-step method is called a Robinson annulation, and is
often used for the synthesis of polycyclic compounds. The term
annulation is derived from the Latin word for ring (annulus).
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