# Organic Chemistry Pharmacy College/ 2<sup>nd</sup> Stage Br Sham Wali Qurban

5

Aldelaydes and Kelones

3

# **19.1 Introduction to Aldehydes and Ketones**

Aldehydes (RCHO) and ketones (R2CO) are similar in structure in that both classes of compounds possess a CIPO bond, called a *carbonyl group*:



Aldehydes and ketones are responsible for many flavors and odors that you will readily recognize:



Simple aldehydes and ketones are industrially important; for example:
 o



- Formaldehyde is used as a preservative in some vaccine formulations,
- while **acetone** is used as a solvent and is commonly found in nail polish remover.
- Aldehydes and ketones are also used as building blocks in the syntheses of commercially important compounds, including pharmaceuticals and polymers. Compounds containing a carbonyl group react with a large variety of nucleophiles, affording a wide range of possible products.
- Due to the versatile reactivity of the carbonyl group, aldehydes and ketones occupy a central role in organic chemistry.

# **19.2 Nomenclature**

# Nomenclature of Aldehydes

**Aldehydes** are also named using the same four-step procedure. When applying this procedure for naming aldehydes, the following guidelines should be followed:

• When naming the parent, the suffix "-al" indicates the presence of an aldehyde group:



A cyclic compound containing an aldehyde group immediately adjacent to the ring is named as a carbaldehyde:



Cyclohexanecarbaldehyde

• The International Union of Pure and Applied Chemistry (IUPAC) nomenclature also recognizes the common names of many simple aldehydes, including the following examples:



Ч₃С Н



Formaldehyde

Acetaldehyde

Benzaldehyde

• Nomenclature of Ketones

**Ketones**, like aldehydes, are named using the same four-step procedure. When naming the parent, the suffix "-one" indicates the presence of a ketone group:



**IUPAC** nomenclature recognizes the common names of many simple ketones, including the following examples:





(*R*)-6-ethyl-4,4-dimethyl-3-nonanone.



(S)-3,3-Dibromo-4-ethylcyclohexanone

19.1 Assign a systematic (IUPAC) name to each of the following compounds:



19.2 Draw the structure of each of the following compounds: (S)-3,3-Dibromo-4-ethylcyclohexanone

# **19.3** Preparing Aldehydes and Ketones: A Review



When treated with a strong oxidizing agent, primary alcohols are oxidized to carboxylic acids. Formation of an aldehyde requires a mild oxidizing agent, such as the oxidizing agents shown above, that will not further oxidize the resulting aldehyde.

#### **Ozonolysis of Alkenes**

8.13

9.7



Ozonolysis will cleave a C=C double bond. If either carbon atom bears a hydrogen atom, an aldehyde will be formed.

Hydroboration-Oxidation of Terminal Alkynes



Hydroboration-oxidation results in an *anti*-Markovnikov addition of water across a  $\pi$  bond, followed by tautomerization of the resulting enol to form an aldehyde.

### TABLE 19.2 A SUMMARY OF KETONE PREPARATION METHODS COVERED IN PREVIOUS CHAPTERS



Aromatic rings that are not too strongly deactivated will react with an acyl halide in the presence of a Lewis acid to produce an aryl ketone.

# **19.4 Introduction to Nucleophilic Addition Reactions**

The electrophilicity of a carbonyl group derives from resonance effects as well as inductive effects:



In general, aldehydes are more reactive than ketones toward nucleophilic attack. This observation can be explained in terms of both steric and electronic effects:

- 1. Steric effects.
- 2. Electronic effects.





A ketone has two electron-donating alkyl groups that stabilize the partial positive charge An aldehyde has only one electron-donating alkyl group that stabilizes the partial positive charge

The  $\delta$ + charge of an aldehyde is less stabilized than a ketone. As a result, aldehydes are more electrophilic than ketones and therefore more reactive.









Very powerful electrophile

# Various nucleophiles that can attack a carbonyl group.



# **19.5 Oxygen Nucleophiles**

# Hydrate Formation

When an aldehyde or ketone is treated with water, the carbonyl group can be converted into a **hydrate**:







## **Acetal Formation**



The brackets surrounding the H<sup>+</sup> indicate that the acid is a catalyst.





When the starting compound is a ketone, the product can also be called a "**ketal**." *Acetal* is a more general term,

*p*-Toluenesulfonic acid (TsOH)

Sulfuric acid

**Common acids** 

#### **MECHANISM 19.5 ACETAL FORMATION**





In such cases, formation of the acetal can be accomplished by removing one of the products (water) via a special distillation technique. By removing water as it is formed, the reaction can be forced to completion.



## **Acetals as Protecting Groups**



## **Stable Hemiacetals**





Cyclic hemiacetal

# **19.6 Nitrogen Nucleophiles**

# **Primary Amines**

In mildly acidic conditions, an aldehyde or ketone will react with a primary amine to form an **imine**:



# MECHANISM 19.6 IMINE FORMATION



Many different compounds of the form  $_{RNH2}$  will react with aldehydes and ketones, including compounds in which **R** is not an alkyl group, for example:



## **Secondary Amines**

In acidic conditions, an aldehyde or ketone will react with a secondary amine to form an **enamine**:



# MECHANISM 19.7 ENAMINE FORMATION





### **Wolff–Kishner Reduction**

we noted that ketones can be converted into **hydrazones**. This transformation has practical utility, because **hydrazones** are readily reduced under strongly basic conditions:



## MECHANISM 19.8 THE WOLFF-KISHNER REDUCTION



**19.22** Predict the product of the following two- step procedure and draw a mechanism for its formation:

